The Semaphorin receptor PlexinA3 mediates neuronal apoptosis during dorsal root ganglia development.
نویسندگان
چکیده
Extensive neuronal cell death during development is believed to be due to a limiting supply of neurotrophic factors. In vitro studies suggest that axon guidance molecules directly regulate neuronal survival, raising the possibility that they play a direct role in neuronal cell death in vivo. However, guidance errors may also influence survival indirectly due to loss of target-derived neurotrophic support. The role of guidance molecules in neuronal death in vivo has thus been difficult to decipher. Semaphorin3A, a repulsive guidance cue for sensory neurons, can induce sensory neuron death in vitro. Null mice studies of the Semaphorin3A coreceptors showed that guidance activity is mediated by PlexinA4, but PlexinA3 partially compensates in PlexinA4(-/-) mice. Here we demonstrate that both Plexins contribute to Sema3A-induced cell death in vitro, albeit in a different hierarchy. PlexinA3 is absolutely required, while PlexinA4 makes a smaller contribution to cell death. We found that PlexinA3(-/-) mice, which, unlike PlexinA4(-/-) mice, do not exhibit sensory axon patterning defects, show reduced neuronal apoptosis and an increased number of DRG neurons. Semaphorin3A involvement in neuronal death in vivo was demonstrated by a sensitization experiment using the proapoptotic effector Bax. Our results identify Plexins as mediators of Semaphorin-induced cell death in vitro, and provide the first evidence implicating Semaphorin/Plexin signaling in neuronal survival independent of its role in axon guidance. The results also support the idea that naturally occurring neuronal cell death reflects not only competition for target-derived trophic factors, but also the action of proapoptotic signaling via a Semaphorin/Plexin pathway.
منابع مشابه
Deletion of Sema3a or plexinA1/plexinA3 Causes Defects in Sensory Afferent Projections of Statoacoustic Ganglion Neurons
Statoacoustic ganglion (SAG) neurons project sensory afferents to appropriate targets in the inner ear to form functional vestibular and auditory circuits. Neuropilin1 (Npn1), a receptor for class 3 semaphorins, is required to generate appropriate afferent projections in SAG neurons; however, the ligands and coreceptors involved in Npn1 functioning remain unknown. Here we show that both plexinA...
متن کاملRole of a voltage-sensitive calcium channel blocker on inhibition of apoptosis in sensory neurons of cultured dorsal root ganglia in adult rat
Introduction: Under pathological conditions, abnormal increase in intracellular calcium concentrations is believed to induce cell death. In the present study, a voltage-sensitive calcium channel blocker (loperamide hydrochloride) was used to investigate its role in inhibition of apoptosis in sensory neurons of cultured spinal dorsal root ganglia (DRG). Methods: L5 DRG from adult rats were di...
متن کاملThe Fer protein tyrosine kinase mediates a neurite collapse response to Semaphorin 3A in dorsal root ganglion
متن کامل
Neuropilin receptors guide distinct phases of sensory and motor neuronal segmentation.
The segmented trunk peripheral nervous system is generated by ventrally migrating neural crest cells that exclusively invade the anterior sclerotome and differentiate into metameric dorsal root and sympathetic ganglia. Meanwhile, ventral spinal motor axons also project through the somites in a segmental fashion. How peripheral nervous system segmentation is generated is unknown. We previously s...
متن کاملCollagen as Adherent Substratum and Inducer of Dorsal Root Ganglia Outgrowth
Neurite outgrowth from dorsal root ganglion (DRG) explants is a method of evaluating neurotrophic activity of growth factors. When complete medium containing collagen was supplemented with nerve growth factor (NGF) DRG outgrowth was observed after 18 h. In the absence of NGF and in the presence of collagen, the DRG outgrowth took place after 72 h. In wells not supplemented with collagen gel in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 47 شماره
صفحات -
تاریخ انتشار 2008